Latency analysis of self-suspending task chains

Abstract

Many cyber-physical systems are offloading computation-heavy programs to hardware accelerators (e.g., GPU and TPU) to reduce execution time. These applications will self-suspend between offloading data to the accelerators and obtaining the returned results. Previous efforts have shown that self-suspending tasks can cause scheduling anomalies, but none has examined inter-task communication. This paper aims to explore self-suspending tasks’ data chain latency with periodic activation and asynchronous message passing. We first present the cause for suspension-induced delays and worst-case latency analysis. We then propose a rule for utilizing the hardware co-processors to reduce data chain latency and schedulability analysis. Simulation results show that the proposed strategy can improve overall latency while preserving system schedulability.

Publication
In Design, Automation & Test in Europe Conference & Exhibition, DATE 2022
Jiyang Chen
Jiyang Chen
PhD student

My research interests include FPGA resource management, operating system virtualisation, and cloud computation.